API Documentation
Integrate with Arlo's powerful, unified API. Access the world's best AI models through a single, consistent interface.
OpenAI Compatible Format
Arlo is compatible with the OpenAI request schema. You can use the official OpenAI Python library by pointing the `base_url` to our API endpoint.
Request Example (Python)
import openai
client = openai.OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.arlo.mom/v1"
)
response = client.chat.completions.create(
model="gpt-5",
messages=[
{"role": "user", "content": "Write a short poem on AI"}
]
)
print(response)
Calling Arlo Directly
Alternatively, you can make direct HTTP requests using any tool, like cURL.
Request Example (cURL)
curl -X POST https://api.arlo.mom/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-5",
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
Sending Images to AI
You can send images to vision-capable models using base64 encoding or image URLs. Images should be included in the message content array.
Using Base64 Images
curl -X POST https://api.arlo.mom/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-5",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}
]
}'
Using Image URLs
curl -X POST https://api.arlo.mom/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-5",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image"},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/image.jpg"
}
}
]
}
]
}'
Python Example with Images
import openai
import base64
# Read and encode image
with open("image.jpg", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
client = openai.OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.arlo.mom/v1"
)
response = client.chat.completions.create(
model="gpt-5",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
)
print(response.choices[0].message.content)
Available Models
To use a model, simply specify its identifier in the `model` parameter of your request. You can also
fetch the complete list programmatically via GET /v1/models.
claude-sonnet-4gpt-5gemini-2.5-progemini-2.5-flashdeepseek-r1deepai-standardglm-4.5-airgpt-oss-120b
Decent Provider Models
Use "provider": "decent" for high-quality models:
gpt-5gpt-5-minigpt-5-nanogpt-4o-mini
Best Provider Models
Use "provider": "best" in your request to access 60+ free models including:
deepseek-v3.1,deepseek-chat,deepseek-reasonerclaude-sonnet-4,claude-sonnet-4.5,claude-haiku-4.5(Vision supported)gpt-5-nano,gpt-5-chat,gpt-5-mini(Vision supported)gemini-2.5-flash,gemini-2.5-pro(Vision supported)grok-4,grok-4-think,grok-3-minio1-pro,o3-mini,o4-mini- And 50+ more models
Note: Models marked with "Vision supported" can analyze images sent via the image upload format shown above.
Unreliable Provider Models
Use "provider": "unreliable" for experimental models:
deepseek-v3.2-expgpt-5-mini-2025-08-07sonar-reasoninggemini-2.5-flashclaude-3.5-haiku
Image Generation Models
Endpoint: POST /v1/image/completions
Use "provider": "best" with these models:
flux-schnell,seed-oss,lucid-originsdxl,nano-banana,gpt-image-1sd-3.5,sd-3.5-large,dall-e-3
Text-to-Speech Models
Endpoint: POST /v1/audio/completions
Use "provider": "unreliable" for audio generation:
gpt-4o-mini-tts- Voices: alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, marin, cedareleven-multilingual-v2- Voices: Clyde, Roger, Sarah, Laura, Charlie, George, Callum, River, Harry, Liam, Alice, Matilda, Will, Jessica, Eric, Chris, Brian, Daniel, Lily, Bill, Burt Reynolds™, Robert Riggs
Special Model: deepseek-r1
The deepseek-r1 is a specialized reasoning model. To provide insight into its thought process, its responses may include <think> blocks containing its intermediate reasoning. You should parse and remove these blocks before displaying the final output.
Model Reference File
For offline use, you can download a Markdown file containing the complete list of models and usage instructions.
Download LLM.md